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A numerical investigation of the steady magnetohydrodynamics free convection in a rectangular cavity
filled with a fluid-saturated porous medium and with internal heat generation has been performed. A
uniform magnetic field, inclined at an angle c with respect to the horizontal plane, is externally imposed.
The values of the governing parameters are the inclined angle c = 0, p/6, p/4 and p/2, Hartmann number
Ha = 0, 1, 5, 10 and 50, Rayleigh number Ra = 10, 100, 103 and 105, and the aspect ratio a = 0.01, 0.2, 0.5
and 1 (square cavity). It is shown that the intensity of the core convection is considerably affected by the
considered parameters. It is also found that the local Nusselt number NuY decreases on the bottom wall as
c increases (magnetic field changes its direction from the horizontal to the vertical direction) and vice
versa for the top wall of the cavity. The reported results are in good agreement with the available pub-
lished work in the literature.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convective heat transfer in viscous fluids and fluid-sat-
urated porous media has occupied the central stage in many funda-
mental heat transfer analyses and has received considerable
attention over the last few decades. This interest is due to its wide
range of applications in, for example, packed sphere beds, high per-
formance insulation for buildings, chemical catalytic reactors,
grain storage and such geophysical problems as frost heave. Porous
media are also of interest in relation to the underground spread of
pollutants, solar power collectors, and to geothermal energy sys-
tems. The literature concerning convective flow in porous media
is abundant and representative studies in this may be found in
the recent books by Nield and Bejan [1], Ingham and Pop [2], Vafai
[3], Bejan et al. [4], Pop and Ingham [5], de Lemos [6] and Vadasz
[7]. Further, a valuable reference on convective fluids in cavities
filled with viscous fluids can be found in the recent book by
Martynenko and Khramtsov [8]. Natural convection in enclosures
in which internal heat generation is present is of prime importance
in certain technological applications. Examples are post-accident
heat removal in nuclear reactors and geophysical problems
associated with the underground storage of nuclear waste, among
others (Acharya and Goldstein [9], Ozoe and Maruo [10], Lee and
Goldstein [11], Fusegi et al. [12], Venkatachalappa and Subbaraya
[13], Shim and Hyun [14], Hossain and Wilson [15]).
ll rights reserved.
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The present paper investigates the effect of a magnetic field on
the steady free convection in a rectangular cavity filled with a por-
ous medium saturated with an electrically conducting fluid. This
type of problem arises in geophysics when a fluid saturates the
earth’s mantle in the presence of a geomagnetic field. Natural con-
vection flow in the presence of a magnetic field in an enclosure
filled with a viscous and incompressible fluid has been studied
by Garandet et al. [16], Alchaar et al. [17], Kanafer and Chamka
[18], Chamkha and Al-Naser [19], Mahmud et al. [20], Hossain
and Ress [21], Hossain et al. [22], and Ece and Büyük [23]. How-
ever, there are very few studies on the natural convection of a con-
ducting fluid saturating a porous medium in the presence of a
magnetic field in an enclosure. To the best of our knowledge, the
first investigation of this problem is due to Alchar et al. [17] who
considered the stability of a conducting fluid saturating a porous
medium in the presence of a uniform magnetic field using the
Brinkman model. However, some comments on the MHD convec-
tion in a porous medium have been done very recently by Nield
[24]. Also a very recent paper by Barletta et al. [25] has studied
the mixed convection with heated effect in a vertical porous annu-
lus with the radially varying magnetic field.
2. Mathematical model

In this paper, we consider the steady natural convection flow in
a rectangular cavity filled with an electrically conducting fluid-sat-
urated porous medium with internal heat generation. We assume
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Nomenclature

a aspect ratio
B applied magnetic field (Wb m�2)
cp specific heat at constant pressure (kJ kg�1 K�1)
g gravitational acceleration vector (m s�2)
Ha Hartmann number
h height of the cavity (m)
k thermal conductivity (W m�1 K�1)
K permeability of the porous medium (m2)
l width of the cavity (m)
Nu mean Nusselt number
NuY local Nusselt number
q0000 heat generation (W m�3)
Ra Rayleigh number
u, v velocity components along the x- and y-directions,

respectively (m s)
V velocity vector (m s�1)

T0 temperature of the vertical wall (K)
x dimensional Cartesian coordinate along the bottom wall (m)
y dimensional Cartesian coordinate along the left vertical

wall (m)
X, Y dimensionless Cartesian coordinates

Greek symbols
am effective thermal diffusivity (m2 s�1)
b coefficient of thermal expansion (K�1)
c angle of inclination to the horizontal of applied mag-

netic field (rad)
l dynamic viscosity (kg m�1 s�1)
h dimensionless temperature
q fluid density (kg m�3)
q0 reference density (kg m�3)
r electrical conductivity (X�1 m�1)
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that the enclosure is permeated by a uniform inclined magnetic
field. The geometry and the Cartesian coordinate system are sche-
matically shown in Fig. 1, where the dimensional coordinates x and
y are measured along the horizontal bottom wall and normal to it
along the left vertical wall, respectively. The height of the cavity is
denoted by h and the width by l. Further, the angle of inclination of
the magnetic field B from the horizontal plane and measured pos-
itively in the counterclockwise direction is denoted by c. It is as-
sumed that the vertical walls are maintained at a constant
temperature T0, while the horizontal walls are adiabatic. A uniform
source of heat generation in the flow region with a constant volu-
metric rate of q0000 (W m�3) is also considered. Further, it is assumed
that the effect of buoyancy is included through the well-known
Boussinesq approximation. The viscous, radiation and Joule heat-
ing effects are neglected. The resulting convective flow is governed
by the combined mechanism of the driven buoyancy force, internal
Fig. 1. Geometry of the problem and coordinate system.
heat generation and the retarding effect of the magnetic field. The
magnetic Reynolds number is assumed to be small so that the in-
duced magnetic field can be neglected compared to the applied
magnetic field.

Under the above assumptions, the conservation equations for
mass, momentum under the Darcy approximation, energy and
electric transfer are given by

r � V ¼ 0 ð1Þ

V ¼ K
l
ð�rpþ qgþ I� BÞ ð2Þ

ðV � rÞT ¼ amr2T þ q0000
q0cp

ð3Þ

r � I ¼ 0 ð4Þ
I ¼ rð�r/þ V � BÞ ð5Þ
q ¼ q0½1� bðT � T0Þ� ð6Þ

where V is the fluid velocity vector, T is the fluid temperature, p is
the pressure, B is the external magnetic field, I is the electric cur-
rent, / is the electric potential, g is the gravitational acceleration
vector, K is the permeability of the porous medium, am is the effec-
tive thermal diffusivity, q is the density, l is the dynamic viscosity,
b is the coefficient of thermal expansion, cp is the specific heat at
constant pressure, r is the electrical conductivity, q0 is the refer-
ence density and �r/ is the associated electric field. As discussed
by Garandet et al. [16], Eqs. (4) and (5) reduce to r2/ = 0. The un-
ique solution is r/ = 0 since there is always an electrically insulat-
ing boundary around the enclosure. Thus, it follows that the electric
field vanishes everywhere (see, Alchaar et al. [17]).

Eliminating the pressure term in Eq. (2) in the usual way, the
governing equations (1)–(3) can be written as
ou
ox
þ ov

oy
¼ 0 ð7Þ

ou
oy
� ov

ox
¼ � gKb

t
oT
ox

þ rKB2
0

l
� ou

oy
sin2 cþ 2
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oy

sin c cos cþ ov
ox

cos2 c
� �

ð8Þ

u
oT
ox
þ v

oT
oy
¼ am

o2T
ox2 þ

o2T
oy2

 !
þ q0000

qcp
ð9Þ



Table 1
Accuracy test for Ra = 103, Ha = 0 and a = 1

Nodes w(0.24,0.24) h(0.24,0.24)

26 � 26 2.6368 0.0389
51 � 51 2.5987 0.0384
101 � 101 2.5800 0.0382
201 � 201 2.5707 0.0381
Richardson extrapolation 2.5614 0.0380

Table 2
Comparison of wmax and hmax for Ha = 0 and a = 0.5

Ra Haajizadeh et al. [27] Present (Richardson extrapolation)

wmax hmax wmax hmax

10 0.078 0.130 0.079 0.127
103 4.880 0.118 4.833 (4.832) 0.116 (0.116)
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which has to be solved subject to the boundary conditions

u ¼ 0; T ¼ T0 at x ¼ 0 and x ¼ l; 0 6 y 6 h

v ¼ 0;
oT
oy
¼ 0 at y ¼ 0 and y ¼ h; 0 6 x 6 l

ð10Þ

where B0 is the magnitude of B and t is the kinematic viscosity of
the fluid. Further, we introduce the following non-dimensional
variables

X ¼ x
l
; Y ¼ y

h
; U ¼ h

am
u; V ¼ l

am
v; h ¼ T � T0

q0000 l2
=k

� � ð11Þ

where k is the thermal conductivity. Introducing the stream func-
tion w defined as U = ow/oY and V = �ow/oX, and using expressions
(11) in Eqs. (7)–(9), we obtain the following partial differential
equations in non-dimensional form:

o2w

oX2 þ a2 o2w

oY2 ¼ �Ra
oh
oX

� Ha2 a2 o2w

oY2 sin2 cþ 2a
o2w

oXoY
sin c cos cþ o2w

oX2 cos2 c

 !
ð12Þ

o2h

oX2 þ a2 o2h

oY2 þ 1 ¼ a
ow
oY

oh
oX
� ow

oX
oh
oY

� �
ð13Þ

which have to be solved subject to the boundary conditions

w ¼ 0; h ¼ 0; at X ¼ 0 and X ¼ 1; 0 6 Y 6 1

w ¼ 0;
ow
oY
¼ 0;

oh
oY
¼ 0 at Y ¼ 0 and Y ¼ 1; 0 6 X 6 1

ð14Þ

where a = l/h is the aspect ratio of the cavity, Ra = gKbDTH/am is the
Rayleigh number and Ha ¼ rKB2

0=l is the Hartmann number for the
porous medium. It should mentioned that c = 0 corresponds to a
horizontal magnetic field and c = p/2 corresponds to a vertical mag-
netic field, respectively.

Once we know the temperature we can obtain the rate of heat
transfer from each of the vertical walls, which are given in terms
of the local Nusselt number NuY which is defined as

NuY ¼ �
oh
oX

� �
X¼0

: ð15Þ
3. Numerical method and validation

To obtain the numerical solution of Eqs. (12) and (13) a central
finite-difference scheme was used and the system of discretized
equations has been solved using a Gauss–Seidel iteration tech-
nique. The unknowns h and w were calculated iteratively until
the following criteria of convergence was fulfilled:
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Fig. 2. Streamlines and isotherms for Ra = 103, Ha = 0 whe
max vnewði; jÞ � voldði; jÞ
� ��� �� 6 e ð16Þ

where v represents the temperature or the stream function and e is
the convergence criteria. In all the results presented in this paper,
e = 10�7 was found be sufficiently small such that any smaller value
produced results which were graphically the same. In order to
choose the size of the grid, accuracy tests using the finite different
method and Richardson extrapolation [26] for mesh sensitivity
analysis were perform for Ra = 103, Ha = 0, and aspect ratio a = 1,
using three sets of grids: 26 � 26, 51 � 51, 101 � 101 and
201 � 201 as shown in Table 1. Reasonably good agreement was
found between the 51 � 51 and 101 � 101 grids and therefore the
grid used in this problem was 101 � 101 and these give accurate re-
sults for Ra 6 103. We have also found that 201 � 201 grids give
accurate results for Ra 6 105.

Further, in order to verify the accuracy of the code we compared
the obtained results for the case when the magnetic field is absent
(Ha = 0), a = 0.5 and Ra = 10 and 103, respectively, with those
obtained by Haajizadeh et al. [27]. These results are shown in
Table 2. It can be concluded from this table that the results are
in good agreement and we can be confident that the present anal-
ysis and the code used are correct.
4. Analytical solution

For small values of a(� 1), the solution of Eqs. (12) and (13) is
given by the leading order terms, w = w0(x) and h = h0(x), see Man-
dar et al. [29]
max = 0.097359
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Fig. 3. Streamlines and isotherms for Ra = 103, Ha = 1 and for different values of c.
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ð1þ Ha2 cos2 cÞ o
2w0

oX2 ¼ �Ra
oh0

oX
ð17Þ

o2h0

oX2 þ 1 ¼ 0 ð18Þ

with the boundary conditions

w0 ¼ h0 ¼ 0 at X ¼ 0 and X ¼ 1 ð19Þ
On solving Eqs. (17) and (18) with the boundary conditions (19), we
obtain

h0ðXÞ ¼
Xð1� XÞ

2

w0ðXÞ ¼
Ra

2ð1þ Ha2 cos2 cÞ
1
6

X � 1
2

X2 þ 1
3

X3
� �

:
ð20Þ
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Fig. 4. Streamlines and isotherms for Ra = 103, Ha = 10 and for different values of c.
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5. Results and discussion

In this section, we present numerical results for the streamlines,
isotherms and velocity profiles on the left wall, for various values
of the magnetic field parameter Ha, inclination angle c of the mag-
netic field and the Rayleigh number Ra. In addition, the local Nus-
selt numbers NuY have been calculated. Figs. 2–6 show plots of the
streamlines and isotherms for an aspect ration a = 1, Rayleigh
number Ra = 103 and 105, magnetic field parameter Ha = 0, 1, 10
and 50 and values of the inclined angle c = 0, p/6, p/4 and p/2. It
is seen from these figures that the intensity of the convection in
the core is considerable affected by the magnetic field. A weak con-
vective motion with a bicellular structure is induced, see Fig. 2. The
two cells are symmetrical with respect to the central plane accord-
ing to the value of c. It is also observed that these two cells rotate
for c = p/6 and p/4. It is seen from Fig. 2 that the pattern of the
streamlines and isotherms are similar to those predicted by Haaji-
zadeh et al. [27]. On the other hand, Fig. 3 illustrates that for rela-
tive small values of Ha (Ha = 1) the maximum stream function
increases and the maximum temperature decreases as c increases.
However, for larger values of Ha (Ha� 1) the maximum of both
the stream function and the temperature increase as c increases.
Therefore, the presence of the magnetic force tends to accelerate
the fluid motion inside the cavity when the direction of the mag-
netic field changes from the horizontal to the vertical direction.
Further, for Ra = 103 and higher values of Ha, the isotherms are
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almost parallel and this implies that conduction is dominant, see
Figs. 4 and 5. Also, these figures show that when the magnetic field
is horizontal (c = 0) and Ra = 103 the core vortex is elongated verti-
cally as the Hartmann number increase. For the value of Ra and c
considered, the core streamlines start to flatten at the top and bot-
tom of the cavity, while the isotherms are almost parallel. This
indicates that conduction is dominated, see Fig. 5. For high Ray-
leigh numbers, the flow and heat transfer regime is characterized
by a thermally stratified core region and two thin boundary layers
on the vertical walls, see Fig. 6(a). Also, as the Rayleigh number and
magnetic field increase (Ra = 105 and Ha = 10, 50), stronger convec-
tive motion takes place and the core vortex breaks up into three
cells. There is also a weak distortion of the isotherms, as indicated
in Fig. 6(b) and (c). This occurs at smaller inclination angles of the
magnetic field (c = p/6). This is in agreement with the results re-
ported by Al-Najem et al. [28] for the case of natural convection
in a two-dimensional square cavity filled with a viscous fluid with
a transverse magnetic field.

Typical velocity profiles at the vertical walls, Uw for Ra = 103 and
different values of c and Ha are shown in Fig. 7. We observe that for
a fixed value of Ha that the minimum of the wall velocity is at-
tained when the magnetic field is in the vertical direction (c = p/
2). On the other hand, for c = p/4 the wall velocity decreases as
Ha increases. We observe that for all the values of Ra considered,
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the maximum temperature profiles do not overshoot the limit pre-
scribed by the analytical solution (hmax = 1/8), see Fig. 8. Numerical
and analytical solutions for the streamlines on the horizontal cen-
terline plane of the cavity are shown in Fig. 9 for a small value of
the aspect ratio, namely a = 0.01 and for Ra = 103 when Ha = 0, 1,
5 and c = 0 (Fig. 9a) and when Ha = 1 and c = 0, p/4, p/2 (Fig. 9b).
We observe from these figures that there is very good agreement
between the analytical and numerical solution.

Fig. 10 shows the variation of the local Nusselt number NuY

with Y for Ra = 100 and c = 0. In order to compare the present
results with those obtained by Haajizadeh et al. [27] when the
magnetic field is absent (Ha = 0) the value of 2NuY for a = 0.2
is presented in this figure. It is observed that the results are
in very good agreement and therefore we are confident that
the present results are accurate. Finally, Fig. 11 presents the
variations of the local Nusselt number NuY with Y for Ra = 100,
Ha = 1 and for several values of c when a = 1. It is also found
that the local Nusselt number NuY decreases at the bottom wall
as c increases (magnetic field changes its direction from the hor-
izontal to the vertical direction) and vice versa for the top wall
of the cavity.
6. Conclusion

The present numerical study exhibits many interesting features
concerning the effect of the inclined magnetic fields on the free
convection flow and heat transfer characteristics in a rectangular
cavity filled with a porous medium. Detailed numerical results
for the temperature distribution and heat transfer have been pre-
sented in graphical and tabular form. The main conclusions of
the present analysis are as follows:

� In general, it has been found that the effect of the magnetic field
is to reduce the convective heat transfer inside the cavity.

� The convection modes within the cavity were found to depend
upon both the strength and the inclination of the magnetic field.
The applied magnetic field in the horizontal direction was found
to be most effective in suppressing the convection flow for a
stronger magnetic field in comparison with the vertical
direction.

� It is found that strong boundary layers are formed near the ver-
tical walls for Ra = 105 and c = p/6 and the intensity increases as
Ha increases. The flat isotherms in the core region indicate that
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there is negligible lateral heat conduction and the equal spacing
of the streamlines implies a uniform vertical velocity in this
region, as predicted by boundary layer theory, see Fig. 6(a).

� The magnetic field has a negligible effect on the heat transfer
mechanism for small values of c and Ha� 1. This is true since
pure conduction becomes dominant when the magnetic field
is applied in the horizontal direction (c = 0). However, for
Ra = 105 the parabolic profile is distroyed.
� For Rayleigh number Ra = 103, and small Hartmann numbers,
the flow and heat transfer are characterized by a parallel flow
structure in the central region of the cavity. The conduction is
the dominant mode of heat transfer and vertical velocity profiles
and temperatures are almost parabolic.

� It should be pointed out that the general analysis described in
this work can represent a useful starting point to treat more
complex problems, such as, for example, time-dependent flows.
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